20:13 Интересные новости. Энергия будущего | |
Миниатюрные газотурбинные двигатели, разработанные в Массачусетсском технологическом институте (MIT) и работающие на водороде, могут стать основой чистых, тихих и экономичных персональных электростанций. История газотурбинных двигателей уходит корнями в начало ХХ века. В 1903 году норвежский изобретатель Агидус Эллинг первым создал работающий двигатель с газовой турбиной мощностью 11 л.с. (двигатель самолета братьев Райт, который поднялся в воздух в том же году, имел мощность 12 л.с.). Спустя несколько лет Чарльз Кёртис, изобретатель паровой турбины, подал патентную заявку, в которой описал конструкцию газовой турбины, и в 1914-м получил патент. В 1918 году фирма General Electric (GE), основанная Томасом Эдисоном в середине 1870-х, начала работы над турбонагнетателями для авиационных двигателей, а спустя два десятилетия реактивными авиадвигателями стало заниматься газотурбинное подразделение фирмы (которое сейчас считается одним из крупнейших в мире в своей области). В 1930 году изобретатель и офицер Королевских ВВС Великобритании Фрэнк Уиттл разработал и запатентовал первый газотурбинный двигатель для использования в качестве реактивного движителя. Пока Уиттл занимался решением технических проблем, связанных с конструкцией двигателя, немец Ганс фон Охайн сумел первым создать и испытать в 1939 году самолет с реактивным двигателем. От авиации до энергетики Во второй половине XX века газотурбинные двигатели стали основой современной авиации. Конечно, двигатели совершенствовались и увеличивались в размерах. Сегодня рекорд принадлежит двигателям серии GE90, которые устанавливают на Boeing 777. Диаметр вентиляторов этого двигателя 3,4 м, в нем установлен компрессор с 22 лопатками, а его тяга составляет 52 000 кг (и более 57 600 кг при испытаниях), что в 10 000 раз больше, чем мощность двигателя братьев Райт, которым они пользовались 100 лет назад. Современные газотурбинные двигатели (ГТД) служат не только в авиации, но и в энергетике, где их используют для производства электроэнергии. Горячие газы, полученные в результате сжигания природного газа в камере сгорания, проходят через турбину, вращают ее и приводят в движение вал генератора. ГТД широко используются на электростанциях во время пиковых нагрузок. По размерам и мощности такие ГТД значительно превосходят своих авиационных братьев. Например, передовой ГТД Siemens SGT5-8000H удерживает мировой рекорд – масса этого гиганта 440 т, он может выдавать 340 МВт в простом цикле и почти в два раза больше в комбинированном. КПД этого двигателя составляет почти 40%, а в комбинированном цикле – около 60%. Помимо самолетов и электростанций ГТД применяются и в танках, кораблях, тепловозах, локомотивах, а также используются в качестве вспомогательных генераторов. От большого к малому Новые технологии позволяют создавать двигатели не только гигантских, но и маленьких (и даже очень маленьких) размеров. Японская фирма IHI Aerospace производит переносной газотурбинный генератор Dynajet 2.6 мощностью 2,6 кВт и массой 67 кг. Впрочем, это далеко не предел – двигатель, созданный Швейцарским федеральным технологическим институтом (ETH Zurich), имеет размер всего несколько сантиметров и может генерировать почти 100 Вт электроэнергии на протяжении нескольких дней. Но дальше всех в направлении миниатюризации зашли исследователи Массачусетсского технологического института (MIT), которые разработали газотурбинный двигатель размером всего около 1 мм. Несмотря на столь внушительную разницу в размерах между таким гигантом, как GE90, и миллиметровым двигателем MIT, при ближайшем рассмотрении оказывается, что у них есть очень много общего. По конструкции они похожи: компрессор, камера сгорания и турбина, которая приводится в движение струей продуктов сгорания. Топливо впрыскивается в поток на выходе из компрессора, смешивается с воздухом, сгорает и вращает турбину, которая приводит в движение компрессор и генератор. Однако, разумеется, создание столь малого газотурбинного двигателя ставит перед конструкторами множество задач, с которыми не приходится сталкиваться создателям традиционных ГТД. Микротурбинщики В середине 1990-х в Массачусетсcком технологическом институте группа исследователей начала работать над проектом по микро-ГТД. «Я задумался над вопросом: если большой ГТД может обеспечивать электричеством целый город, почему нельзя сделать очень маленький двигатель, который бы обеспечил электрические потребности одного человека? – вспоминает Алан Эпштейн, профессор MIT и руководитель исследовательской группы. – А цена устройств MEMS (микроэлектромеханических систем) сейчас не слишком высока, так что себестоимость энергии такой персональной электростанции может быть сравнима с аналогичным параметром большого ГТД ($0,3–0,5 за 1 Вт)».Микро-ГТД состоит из тех же принципиальных элементов, что и его «большие братья», но сами размеры требуют принципиально других подходов и технологий. По словам Эпштейна, многие вопросы имеют такой же принципиальный характер – компоновка, механические нагрузки, вопросы коррозии. Однако в некоторых отношениях разработка микро-ГТД проще – например, микроскопические валы очень жесткие на изгиб, что помогает избавиться от традиционной проблемы изгиба вала у больших двигателей. Тепловые перепады при таких размерах не представляют большой угрозы, отпадает также необходимость ухода и ремонта (микро-ГТД неремонтопригоден, его просто заменяют новым). А в некоторых – сложнее: «Две наши самые большие проблемы – это влияние точности изготовления на эксплуатационные качества пары ‘вал–подшипник’, а также поиск компромисса между требованиями к конструкции (термодинамика, сгорание, нагрузки, гидродинамика и электромеханика) и особенностями технологии изготовления двигателя. Это и по сей день остается нашим важнейшим вопросом». «Хотя детали все те же самые, технология изготовления микро-ГТД, естественно, совершенно иная, она основана на технологиях полупроводниковой промышленности. С помощью фотолитографии можно создавать детали и узлы размерами от 1 до 10 000 микрон с высокой точностью, причем серийно, – объясняет профессор Эпштейн. – Детали вытравливаются из кремниевых монокристаллических пластин толщиной 0,5–1 мм и диаметром 100–300 мм, потом их склеивают вместе и получают пакет с несколькими готовыми двигателями. При необходимости пакет разрезают на кусочки и получают отдельные двигатели. Сами двигатели могут быть различного размера – сверху нас ограничивает не литография, а скорее глубина и точность травления. Для малых размеров, меньше 1 мм, основным ограничением является вязкость воздуха, которая резко отрицательно влияет на характеристики двигателя». В один пакет могут войти десятки или даже сотни микродвигателей. В идеале создание всех устройств из пакета происходит параллельно, что приводит к самому главному преимуществу такой технологии – низкой себестоимости готового изделия. «Подобные двигатели в будущем можно будет изготавливать точно таким же образом, как электронные чипы и автомобильные датчики», – говорит Эпштейн. Микроэнергия для будущего Для чего же нужны подобные двигатели? Сейчас проект микродвигателей в MIT финансируется американским военным ведомством, которое видит в этих новых технологиях большой потенциал. Маленькие двигатели, заряжаемые специальными картриджами с водородом, можно использовать как в небольших беспилотных летательных аппаратах (БПЛА), так и в обычных электронных приборах. Именно питание мобильной военной электроники, скорее всего, станет испытанием сил для первых серийных микро-ГТД, которые появятся на рынке, как надеются разработчики, уже совсем скоро – через несколько лет. Микро-ГТД можно использовать и для гражданских целей – вместо аккумуляторов в мобильных телефонах, ноутбуках, цифровых фотоаппаратах, а также в качестве дешевых микродвигателей для сельского хозяйства, различных датчиков и даже детских игрушек. «Для современных литий-ионных аккумуляторов удельная мощность запасенной энергии составляет порядка 120–150 Вт•ч/кг. Это, конечно, не предел, новые серно-литиевые батареи имеют показатели в два раза выше – порядка 300–350 Вт•ч/кг. Но микро-ГТД в скором будущем все равно будут вне конкуренции – мы ожидаем получить цифры порядка 500–700 Вт•ч/кг. А в отдаленном будущем – 1200–1500 Вт•ч/кг с учетом массы самого двигателя и запаса топлива», – оптимистично заявляет Алан Эпштейн. | |
|
Всего комментариев: 0 | |